Hãy chứng minh bất đẳng thức AM - GM
kiến thức chung
:Tên đúng của bất đẳng thức này là bất đẳng thức AM-GM. Có nhiều cách để chứng minh bất đẳng thức này nhưng hay nhất là cách chứng minh quy nạp của Cauchy. Vì vậy, nhiều người nhầm lẫn rằng Cauchy phát hiện ra bất đẳng thức này. Ông chỉ là người đưa ra cách chứng minh rất hay của mình chứ không phải là người phát hiện ra đầu tiên. Theo cách gọi tên chung của quốc tế, bất đẳng thức Bunyakovsky có tên là bất đẳng thức Cauchy-Schwarz, còn bất đẳng thức Cauchy có tên là bất đẳng thức AM-GM (Arithmetic Means - Geometric Means). Đây là sự nhầm lẫn kì lạ và ngạc nhiên trong thời gian dài!
Trong toán học, bất đẳng thức Cauchy là bất đẳng thức so sánh giữa trung bình cộng và trung bình nhân của n số thực không âm được phát biểu như sau:
Trung bình cộng của n số thực không âm luôn lớn hơn hoặc bằng trung bình nhân của chúng, và trung bình cộng chỉ bằng trung bình nhân khi và chỉ khi n số đó bằng nhau.
• Với 2 số:
Dấu "=" xảy ra khi và chỉ khi
• Với n số:
Lưu ý: n là số tự nhiên lớn hơn 1
Dấu "=" xảy ra khi và chỉ khi
Chứng minh BĐT:
Đặt
Chứng minh dưới đây áp dụng phương pháp quy nạp toán học.
Cơ sở: với n = 1 bất đẳng thức đúng.
Giả thiết quy nạp: giả sử rằng bất đẳng thức đúng với n (n ≥ 1).
Quy nạp: xét n + một số thực không âm. Ta có:
Nếu tất cả các số đều bằng μ, thì ta có đẳng thức và đã được chứng minh. Ngược lại, ta sẽ tìm được ít nhất một số nhỏ hơn μ và một số lớn hơn μ, không mất tính tổng quát, xem rằng: xn > μ và xn+1 < μ.
Ta có: (*)
Xét n số sau: với
cũng là số không âm. Từ đó:
Vì u cũng là trung bình cộng của và theo giả thuyết quy nạp ta có: (**)
Mặt khác từ (*) ta có: (***)
hiển nhiên μ > 0. Nếu có ít nhất một trong x1,...,xn−1 bằng không, ta dễ thấy bất đẳng thức đúng và dấu bằng không xảy ra. Ngược lại, từ (**) và (***)
ta có:
Bất đằng thức được chứng minh.
Nội dung liên quan
Trương Minh Tam